求数列通项公式常用以下几种方法:
一、题目已知或通过简单推理判断出是等比数列或等差数列,直接用其通项公式。
例:在数列{an}中,若a1=1,an+1=an+2(n1),求该数列的通项公式an。解:由an+1=an+2(n1)及已知可推出数列{an}为a1=1,d=2的等差数列。所以an=2n-1。此类题主要是用等比、等差数列的定义判断,是较简单的基础小题。
二、已知数列的前n项和,用公式S1(n=1)Sn-Sn-1(n2)例:已知数列{an}的前n项和Sn=n2-9n,第k项满足5(A)9(B)8(C)7(D)6解:∵an=Sn-Sn-1=2n-10,∴5<2k-10<8∴k=8选(B)此类题在解时要注意考虑n=1的情况。
三、已知an与Sn的关系时,通常用转化的方法,先求出Sn与n的关系,再由上面的(二)方法求通项公式。例:已知数列{an}的前n项和Sn满足an=SnSn-1(n2),且a1=-,求数列{an}的通项公式。解:∵an=SnSn-1(n2),而an=Sn-Sn-1,SnSn-1=Sn-Sn-1,两边同除以SnSn-1,得---=-1(n2),而-=-=-,∴{-}是以-为首项,-1为公差的等差数列,∴-=-,Sn=-,再用(二)的方法:当n2时,an=Sn-Sn-1=-,当n=1时不适合此式,所以,-(n=1)-(n2)四、用累加、累积的方法求通项公式对于题中给出an与an+1、an-1的递推式子,常用累加、累积的方法求通项公式。例:设数列{an}是首项为1的正项数列,且满足(n+1)an+12-nan2+an+1an=0,求数列{an}的通项公式解:∵(n+1)an+12-nan2+an+1an=0,可分解为[(n+1)an+1-nan](an+1+an)=0又∵{an}是首项为1的正项数列,∴an+1+an≠0,∴-=-,由此得出:-=-,-=-,-=-,…,-=-,这n-1个式子,将其相乘得:∴-=-,又∵a1=1,∴an=-(n2),∵n=1也成立,∴an=-(n∈N*)
发布评论